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ABSTRACT

In this paper, I investigate the real hypersurfaces in complex space form
Mn(c), c 6= 0 under the condition that Lξ(φA+ Aφ) = 0, where Lξ and
φA + Aφ denote the structure Lie operator of M and the operator is
composed by the shape operator and the structure tensor φ.
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1. Introduction

A complex n-dimensional Kaehlerian manifold of constant holomorphic sec-
tional curvature c is called a complex space form, which is denoted by Mn(c).
As is well-known, a complete and simply connected complex space form is
complex analytically isometric to a complex projective space PnC, a complex
Euclidean space Cn or a complex hyperbolic space HnC, according to c > 0,
c = 0 or c < 0.
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In this paper we consider a real hypersurface M in a complex space form
Mn(c), c 6= 0. Then M has an almost contact metric structure (φ, g, ξ, η)
induced from the Kaehler metric and complex structure J on Mn(c). The
Reeb vector field ξ is said to be principal if Aξ = αξ is satisfied, where A is the
shape operator of M and α = η(Aξ). In this case, it is known that α is locally
constant Ki and Suh (1990) and that M is called a Hopf hypersurface.

Takagi (1973) completely classified homogeneous real hypersurfaces in such
hypersurfaces as six model spaces A1, A2, B, C, D and E. Berndt (1989)
classified all homogeneous Hopf hyersurfaces in HnC as four model spaces
which are said to be A0, A1, A2 and B. A real hypersurface of A1 or A2

in PnC or A0, A1, A2 in HnC, then M is said to be a type A for simplicity.

The induced operator Lξ on real hypersurface M from the 2-form Lξg is
defined by (Lξg)(X,Y ) = g(LξX,Y ) for any vector field X and Y onM , where
Lξ denotes the operator of the Lie derivative with respect to the structure vector
field ξ. This operator Lξ is given

Lξ = φA−Aφ

on M , and call it structure Lie operator of M . Some works have studied
several conditions on the structure Lie operator Lξ and given some results on
the classification of real hypersurfaces of type A in Mn(c) (see Perez et al.
(2005),Kim and Lim (2014) and Kim et al. (2014))

As for structure Lie operator, Okumura (1975) for c > 0 and Montiel and
Romero (1986) for c < 0 showed the following:

Theorem 1 (Montiel and Romero (1986), Okumura (1975)). Let M be a
real hypersurface of Mn(c), c 6= 0, n ≥ 2. It satisfies Lξ = 0 on M if and only
if M is locally congruent to one of the type A.

With respect to the structure Lie operator,Ki et al. (2010) gave a charac-
terization of real hypersurface in complex space form Mn(c).

Theorem 2 (Ki et al. (2010)). Let M be a real hypersurface of Mn(c),
c 6= 0. Then it is satisfies RξLξg = 0 onM if and only ifM is locally congruent
to one of the model space of type A.

Now we consider the operator defined by

(φA+Aφ)X = 0 (1)
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for any vector field X in M . If M satisfying φA + Aφ = 0, then it is well
known that M is cylinderical (seeKi and Suh (1990)). About the existence
of real hypersurface, many researchers have been studying real hypersurfaces
in nonflat complex space forms under certain geometric conditions such as
φA+Aφ = 0 or integrable (see Kimura and Maeda (1989),Niebergall and Ryan
(1998) and Aiyama et al. (1990) etc). Nevertheless, the classification of real
hypersurfaces under the above conditions remains open problem up to this
point (see Niebergall and Ryan (1998)).

As for,Yano and Kon (1973) investigated the conditions skew-symmetric of
shape operator and structure tensor.

Theorem 2 (Yano and Kon (1973)). Let M be a connected complete real
hypersurface in Pn(c), n ≥ 2. If φA+ Aφ = kφ for some constant k 6= 0, then
M is of type A1 or B

Also, about the holomorphic distribution D is integrable, Kimura and
Maeda (1989) showed the following:

Theorem 3 (Kimura and Maeda (1989)). Let M be a real hypersurface
of Pn(c). Then the second fundamental form of M is η-parallel and the holo-
morphic distribution D is integrable if and only if M is locally congruent to a
ruled real hypersurface.

In this paper we shall study a real hypersurface in a non-flat complex space
form Mn(c) which satisfies Lξ(φA + Aφ) = 0 on M . We give another charac-
terization of real hypersurface of type A in Mn(c) by above condition.

All manifolds in the present paper are assumed to be connected and of class
C∞ and the real hypersurfaces supposed to be oriented.

2. Preliminaries

Let M be a real hypersurface immersed in a complex space form Mn(c),
and N be a unit normal vector field of M . By ∇̃ we denote the Levi-Civita
connection with respect to the Fubini-Study metric tensor g̃ of Mn(c). Then
the Gauss and Weingarten formulas are given respectively by

∇̃XY = ∇XY + g(AX,Y )N, ∇̃XN = −AX
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for any vector fields X and Y tangent to M , where g denotes the Riemannian
metric tensor ofM induced from g̃, and A is the shape operator ofM inMn(c).
For any vector field X on M we put

JX = φX + η(X)N, JN = −ξ,

where J is the almost complex structure ofMn(c). Then we see thatM induces
an almost contact metric structure (φ, g, ξ, η), that is,

φ2X = −X + η(X)ξ, φξ = 0, η(ξ) = 1,

g(φX, φY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ) (2)

for any vector fields X and Y on M . Since the almost complex structure J is
parallel, we can verify from the Gauss and Weingarten formulas the followings:

∇Xξ = φAX, (3)

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ. (4)

Since the ambient manifold is of constant holomorphic sectional curvature c,
we have the following Gauss and Codazzi equations respectively :

R(X,Y )Z = c
4{g(Y, Z)X − g(X,Z)Y + g(φY,Z)φX − g(φX,Z)φY

−2g(φX, Y )φZ}+ g(AY,Z)AX − g(AX,Z)AY, (5)

(∇XA)Y − (∇YA)X =
c

4
{η(X)φY − η(Y )φX − 2g(φX, Y )ξ} (6)

for any vector field X, Y and Z on M , where R denotes the Riemannian
curvature tensor of M .

By the virtue of (3), (Lξg)(X,Y ) = g((φA−Aφ)X,Y ) for any vector fields
X and Y on M , and hence the induced operator Lξ from Lξg is given by

LξX = (φA−Aφ)X.

On the other hand, since φA + Aφ is skew-symmetric, we define an operator
on M in Mn(c) by

g((φA+Aφ)X,Y ) = 0. (7)

for any vector field X and Y on M . Also, if the holomorphic distribution
D satisfies the condition (7), then we call the holomorphic distribution D is
integrable.
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Let Ω be the open subset of M defined by

Ω = {p ∈M |Aξ − αξ 6= 0}. (8)

where α = η(Aξ). We Put

Aξ = αξ + βU, (9)

where U is a unit vector field orthogonal to ξ, and β does not vanish on Ω.

3. Proof of Theorems

In this section, we assume that Ω is not empty, and we shall prove Theorem
3.1 and Theorem 3.2.

Theorem 3.1. LetM be a real hypersurface satisfying Lξ(φA+Aφ) = 0 in
a complex space form Mn(c), c 6= 0. then M is a Hopf hypersurface in Mn(c).

Theorem 3.2. Let M be a real hypersurface in a complex space form
Mn(c), c 6= 0. Then M satisfies Lξ(φA+Aφ) = 0 on M if and only if M is the
following hypersurface:

(1) Cylindrical, (λ+ µ = 0)

(2) locally congruent to one of the model spaces of type A (otherwise).

Proof of Theorem 3.1. Let M be a real hypersurface in a complex space
form Mn(c), c 6= 0, satisfying Lξ(φA+Aφ) = 0. We assume that the open set
Ω given in (9) is not empty, then the above condition together with (2),(3) and
(8) implies that

(φAφA−AφAφ+ φA2φ+A2)X = αη(AX)ξ + βη(AX)U (10)

for any vector field X on M . If we put X = ξ into (11) and using (9), then we
have

β{φAφU +AU} = 0.

Since β 6= 0 in Ω, we obtain

φAφU +AU = 0. (11)
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If we take inner product of ξ and make use of (2) and (9), then we have
β = 0 and hence and it is a contradiction. Thus the set Ω is empty, and hence
M is a Hopf hypersurface.

We shall prove Theorem 3.2, that is, as the characterization of Hopf hyper-
surface we can state:

Proof of Theorem 3.2. By Theorem 3.1,M is a Hopf hypersurface inMn(c).
Since ξ is a Reeb vector field, the assumption Lξ(φA+Aφ)X = 0 is equivalent
to

{φAφA−AφAφ+ φA2φ+A2}X = α2η(X)ξ (12)

On the other hand, if we differentiate Aξ = αξ covariantly and make use of the
(6) of Codazzi, then we have

AφA− α

2
(φA+Aφ)− c

4
φ = 0. (13)

For any vector field X on M such that AX = λX, it follows from (13) that

λφAφX −AφAφX + φA2φX + λ2X = 0 (14)

By virtue of the equation (13), we also obtain

(λ− α

2
)AφX =

1

2
(αλ+

c

2
)φX. (15)

If λ 6= α
2 , then we see from (15) that φX is also a principal direction, say

AφX = µφX. From the equation (14), we obtain

(λ− µ)(λ+ µ) = 0 (16)

If λ + µ = 0, then we have φAX + AφX = 0. Therefore M is cylinderical
(see[5]) If λ = µ, M has at most 3 distinct principal curvatures α and the two
roots of the quadratic equation, and hence φAX = AφX. If λ = µ or λ+µ = 0,
We see from that the above equation that M exist in the case of λ = µ and
hence φAX = AφX for any X on M (see [2]). If λ = α

2 , then it is easily seen
that AφX = α

2 φX = φAX. Therefore from this result we obtain

Lξ = φA−Aφ = 0 (17)

on the whole M . Conversely if it satisfies (17), then it is easily seen that (15)
holds, that is, Lξ(φA + Aφ) = 0 is satisfies on M . Thus Theorem B follows
from Theorem 1.
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4. Conclusion

Takaki and Berndt classified real hypersurface into 6 model spaces in com-
plex projective space and into 4 model spaces in complex hyperbolic space.
Afterward, many geometricians researched operators inherent in real hyper-
surface to find the features of it. This research shows the features of real
hypersurface with operators composed of the combination of shape operators
and structure tensors.
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